Довольно часто перед электриками встаёт вопрос выбора сечения кабеля или провода для подключения какого либо электрооборудования или целого объекта. Как правило, человек находит в интернете таблицу «сечение провода – допустимый ток» и выбирает исходя из неё.

К чему может привести такой выбор провода:

  1. В такого рода таблицах не учитывается длина кабеля, а точнее, его сопротивление, что может вызвать пониженное значение напряжения на конце линии, недостаточное для нормальной работы подключенного электрооборудования.
  2. В случае с оборудованием со значительными значениями пускового тока (например, асинхронные электродвигатели), оборудование не сможет войти в свой рабочий режим, так же, будет оказано влияние на других потребителей подключенных от данной линии.
  3. Экономическая необоснованность при выборе сечения проводника большего значения «с запасом».
  4. Нарушение правил устройства электроустановок (ПУЭ) и Правила технической эксплуатации электроустановок потребителей (ПТЭЭП).
  5. Нет возможности проверить правильность составления таблицы.

Основные этапы при определении сечений проводников

(Скачать блок-схему)

При выборе сечения кабелей и проводов необходимо исходить из условий:

  1. Определения расчётного тока (мощностей) для подключаемого электрооборудования.
  2. Допустимой потери напряжения (падение напряжения на подключаемом электрооборудовании). На данном этапе рассчитывается поперечное сечение проводников исходя из токовой нагрузки и протяженности линии. Например, для электродвигателей в момент подачи напряжения, допускается такое падение напряжения, которое обеспечивает необходимый пусковой момент, также не должна нарушаться работа других потребителей электроэнергии. Это определено нормами качества электрической энергии ГОСТ 13109-97, ПУЭ, а также в технической документации на конкретный тип оборудования.
  3. Нагревания проводников определённого типа (допустимому длительному току). Выбор сечений проводников по нагреву (Одноимённый параграф в ПУЭ). Величина тока в проводнике определённого сечения должна быть не больше определённого значения. Данный параметр зависит от выбранного типа изоляции кабеля и места его прокладки.
  4. Механической прочности жил проводников для различных типов электроустановок.
    Устанавливается минимально допустимое сечение проводника даже в том случае, когда проводник проходит по всем остальным параметрам (определенно в правилах устройства электроустановок).
  5. Определения сечения проводников по экономической плотности тока (Одноимённый параграф в ПУЭ). Экономически обоснованное сечение проводника. (На практике применяется в основном для расчёта крупных объектов)
  6. Проверка надёжности действия токовой защиты при коротком замыкании для выбранного сечения и длины проводников (производится на этапе расчёта аппаратов защиты).

(Все ГОСТы, упомянутые в тексте на момент написания статьи 28.05.2018г – действующие)

Определение расчетных значений (мощностей) и токовых нагрузок электрооборудования

Задача расчёта мощностей нагрузок, не такая простая задача, как может показаться изначально. Например, определение мощности таких нагрузок как лампы накаливания, электроплиты не представляет каких либо затруднений, так как данный вид нагрузки потребляет определённую номинальную мощность, и данное значение может быть взято за расчетное.

Сложнее дело обстоит с электродвигателями, у которых значение потребляемой из сети мощности, напрямую зависит от механического момента вращения, соединенного с механизмом – металлообрабатывающий станок, вентилятор вентиляционной установки, циркуляционный насос и т. п.

Фактическая мощность, потребляемая в определённый момент времени электродвигателем, может значительно отличаться от указанной в паспортных данных номинальной мощности. Например, фактическая потребляемая мощность электродвигателя насоса может меняться в зависимости от: изменения состава перекачиваемой среды, давления в трубопроводе и т. п. Двигатель может оказаться как перегруженным, так и недогруженным.

Тем самым, расчёт мощности для определённой группы потребителей, ещё более усложняется.

Расчетную нагрузку для токоведущих жил необходимо принять наибольшую возможную нагрузку, как наиболее тяжелую для проводов и кабелей линии.

Под наибольшей нагрузкой следует понимать не кратковременный ее всплеск (скачок), а наибольшее усреднённое значение за получасовой период времени.

Расчетная нагрузка группы электрооборудования определяется по формуле:

Формула для расчёта группы электрооборудования

Kс — коэффициент спроса для режима наибольшей нагрузки (мощности), учитывающий наибольшее возможное число подключенного электрооборудования группы. Для электродвигателей коэффициент спроса должен учитывать также значение параметра их загрузки;

Pу — номинальная электрическая мощность подключаемой группы электрооборудования, равная сумме всех номинальных мощностей подключаемого электрооборудования (кВт).

Значение расчетной мощности должно быть не менее номинальной потребляемой мощности, наибольшего из подключаемого электроприемника.

Коэффициент спроса для одного электроприемника (одиночная нагрузка), следует принимать равным единице.

Коэффициенты спроса для каждого типа электрооборудования свои, для их определения следует руководствоваться СП 31-110-2003.

Определение расчётного тока для трёхфазного электрооборудования 380 В

Для дальнейших расчётов сечения проводников по условию нагревания, а так же по условию допустимой потери напряжения, необходимо рассчитать величину расчетного тока линии. Для трехфазного электрооборудования величина расчетного тока (Ампер) определяется по формуле:

Формула для расчёта трёхфазного тока
P — Расчетная мощность всего подключаемого электрооборудования, кВт;
Uн — номинальное напряжение питания, равное междуфазному значению (линейному) Вольт;
cos ф— коэффициент мощности одиночного электрооборудования или среднее значение всего подключаемого оборудования.

Определение расчётного тока для однофазного электрооборудования 220 В

Величина расчетного тока (Ампер) для однофазного электроприемника или для группы приемников, подключенных к одной фазе сети трехфазного тока, определяется по формуле:

Формула для расчёта тока однофазная сеть
Пример №1.

Необходимо определить расчётный ток для столярной мастерской, запитанной от четырехпроводной линии номинальным напряжением 380/220 В.
В мастерской планируется установить :

  • 10 асинхронных электродвигателей, суммарной номинальной мощностью Py1=18 кВт.
  • Освещение состоящие из ламп накаливания суммарной мощностью Py2=1,3 кВт.
  • Шесть бытовых штепсельных розеток (для подключения различной оргтехники); Pу3= 0,06 кВт

Согласно СП 31-110-2003 коэффициент спроса (Kс) для металлообрабатывающих и деревообрабатывающих станков в мастерских, принимается при числе работающих электроприемников до 3 Kс = 0,5.

Коэффициент спроса для расчета групповой сети рабочего освещения, распределительных и групповых сетей эвакуационного и аварийного освещения зданий следует принимать Kс = 1

Установленная мощность штепсельной розетки, принимаем за 0,06 кВт коэффициент Kс = 1.

При смешанном подключении общего рабочего освещения и розеточной сети, расчетную нагрузку следует сложить.

Определяем расчётную нагрузку электродвигателей:

Расчётная нагрузка электродвигателей формула
Освещения и розеток:

Расчётная нагрузка освещения и розеток формула
Определяем расчётную нагрузку розеток:

Расчётная нагрузка одной розетки
Суммарная расчётная нагрузка:

Суммарная расчётная нагрузка
Расчетный ток определяем по формуле (2):

Суммарный ток по формуле 2
Определение поперечного сечения проводов или кабелей по условию допустимой потери напряжения

Выбор поперечного сечения проводников в кабельной сети должен производиться по допускаемой потере напряжения, которая устанавливается с таким расчетом, чтобы отклонения напряжения для всего присоединенного к этой сети электрооборудования не выходили за пределы допустимого.

Номинальные напряжения на выходе систем электроснабжения (по ГОСТу 21128-83):

Номинальные напряжения по ГОСТу 21128-83
Согласно ГОСТу 13109-97:

  • Нормально допустимое значение установившегося отклонения напряжения — ±5.
  • Предельно допустимое значение установившегося отклонения напряжения — ±10.

Активное и индуктивное сопротивление линии

Активное сопротивление линии (Ом/км) равно:

Активное сопротивление линии

При расчете электросетей по потере напряжения активное сопротивление проводов всегда должно учитываться. Напротив, индуктивным сопротивлением линии в ряде случаев, можно пренебречь.

Значение индуктивного сопротивления проводников
Расчет сети по потере напряжения без учета индуктивного сопротивления проводов допустим в следующих случаях:

  • для сети постоянного тока;
  • переменного тока при cosφ = 1
  • для сетей, выполненных кабелями или изолированными проводами, проложенными в трубах на роликах или изоляторах, если их сечении не превосходят величин, указанных в таблице ниже.

Таблица проводников
Формулы расчёта сечения проводников при заданной величине потери напряжения

Трёхфазная линия переменного тока:

Формулы расчёта сечения проводников трёхфазная линия

Двухпроводная линия переменного или постоянного тока:

Расчёт сечения проводников двухпроводная линия переменного или постоянного тока

Где γ — удельная проводимость материала проводов, м/(Ом×мм2);

Uн — номинальное напряжение сети, кВ (для трехфазной сети Uн — междуфазное напряжение);

∆Uдоп — допустимая потеря напряжения в линии, сечение которой определяется, %.

F — сечение проводников, мм2;

∑P∙L=P1∙L1+P2∙L2+…— сумма произведений нагрузок, протекающих по участкам линии, на длину этих участков; нагрузки должны выражаться в киловаттах, длины в метрах;

∑Iа∙L= Iа1 ∙L1+ Iа2 ∙L2+…— сумма произведений проходящих по участкам активных составляющих токов на длины участков;

Токи должны выражаться в амперах, длины — в метрах.

Активные составляющие тока (А) определяются умножением величин токов на величины коэффициентов мощности Iа = I∙ cos ɸ.

Пример расчёта минимального сечения по допустимой потере напряжения (без учета индуктивного сопротивления)

Важно! Необходимо помнить, что в данном расчёте мы находим значение минимального сечения, по допустимой потере напряжения на нагрузке, также в обязательном порядке необходимо проводить проверку по допустимому длительному току (нагревание кабеля).
Таблица в ПУЭ (глава 1.3)

Пример №2.

Определить необходимое сечение двухпроводной линии для прожекторов (на конце линии), с использованием ламп накаливания мощность по 900 Вт 3 штуки, общая длина линии 250 м, номинальное напряжение линии 220 В, допустимая потеря напряжения UДоп=5%, провода линии алюминиевые.

Удельная проводимость для алюминиевых проводов

Определяем суммарную нагрузку:

Суммарная нагрузка для примера 2

Сумма произведений нагрузки на длину линии: ∑P∙L= 2,7 ∙ 250 = 675 кВт ∙ м.
Подставляем значения в формулу (7) и определяем сечения проводов линии:

Подставляем значения в формулу 7

Округляя до ближайшего (в большую сторону) стандартного сечения (выпускаемого промышленностью), выбираем сечение проводов линии.

Пример №3.

Определить сечение кабеля для подключения насоса (на конце линии), с использованием трёхфазного асинхронного двигателя механической мощностью на валу 5.5 кВт АИР100.

Помните ! Что на «шильдеке» двигателя указывается не электрическая мощность (потребляемая из сети) а механическая мощность на валу (ГОСТ Р 52776-2007).

cos ɸ = 0.89, КПД = 0.848, длина кабеля 130 м, номинальное напряжение линии 380 Вольт, допустимая потеря напряжения UДоп=5%, провода линии медные.

Удельная проводимость для медных проводов
Таким образом, для дальнейших расчётов нам необходимо определить активную составляющую электрической мощности:

P2= 5.5/0.848 = 6.485 кВт.

Определяем расчётную нагрузку электродвигателя (коэффициент спроса для одиночной нагрузки Kс = 1):

Определяем расчётную нагрузку электродвигателя

Расчетный ток определяем по формуле (2):

Расчетный ток определяем по формуле 2

Сумма произведений тока на длину линии: ∑I∙L= 11 ∙ 130 = 1430 A ∙ м.
Подставляем значения в формулу (6) и определяем сечения проводов линии:

Подставляем значения в формулу и определяем сечения проводов линии

Округляя до ближайшего (в большую сторону) стандартного сечения (выпускаемого промышленностью), определяем сечение проводов линии 2.5 мм2.

И еще иногда необходимо узнать точное значение потери напряжения в Вольтах, для этого служит формула:

точное значение потери напряжения в Вольтах

Давайте подставим значения из примера №3:

значения из примера 3

 

И наоборот, если необходимо узнать процент отклонения (например при практических замерах):

узнать процент отклонения

Определение поперечного сечения кабелей и проводов по условию допустимого нагревания (допустимый длительный ток)

Протекающий электрический ток в проводнике непременно вызывает его нагрев. Одновременно с этим, происходит охлаждение проводников путем отдачи тепла в окружающую среду. С течением времени, температура проводников достигает определенного значения, которое в дальнейшем остается неизменным.

Максимальная допустимая температура для проводов и кабелей определяется условиями применяемых материалов для изоляции проводников и сечением токоведущих жил.

Величина длительного воздействия тока в проводниках, должна быть ограничена для того чтобы температура проводников не выходила за пределы установленных в правилах устройства электроустановок (ПУЭ. Глава 1.3). В противном случае, повышенная температура кабелей и проводов может вызвать быстрый износ изоляции проводников, что в свою очередь, приведет к аварийным ситуациям.

Пример №4.

Определить допустимую длительную токовую нагрузку для трехжильного кабеля с медными жилами с резиновой изоляцией поперечным сечением 2,5 мм2 при прокладке в земле и в воздухе.

По значению (Таблица 1.3.6. ПУЭ), находим для трехжильного кабеля указанного сечения и применяемых изоляционных материалов, допустимые нагрузки при прокладке в земле — 25 Ампер и в воздухе— 38 Ампер

Как мы видим, значение допустимой токовой нагрузки на один и тот же тип кабеля, меняется в зависимости от условий прокладки (условий охлаждения проводников: лучше всего охлаждение кабеля происходит при прокладке в земле, хуже — при прокладке в воздухе).

На данном этапе мы проверяли сечение кабеля выбранного нами (в примере № 3) по допустимой потере напряжения на соответствие условиям нагревания.

Так же, выбранное нами сечение, соответствует требованиям механической прочности (ПУЭ 3.4.4. ГОСТ Р 50571.5.52-2011).

Также необходимо помнить, что всегда требуется проверка надежности действия токовой защиты при коротком замыкании в удаленных точках сети, при выбранном сечении и длине проводников (будет рассмотрено в следующих публикациях).

Заключение

В данном материале были описаны основные виды расчетов применяемых при выборе поперечных сечений проводников для кабелей и проводов по условию воздействия длительных токов (нагревания), по допустимой потере напряжения. Что является основными критериями в практических расчётах для большинства случаев.

Сечение проводов и кабелей для любого участка сети должно удовлетворять всем этим требованиям. Но во многих случаях решающее значение при выборе сечения имеет одно из упомянутых условий.

Так же хотелось отметить, что для некоторых условий (как правило, для крупных объектов), также необходимо учитывать следующие параметры:

  • Поправку на температуру окружающей среды.
  • Поправка на число кабелей, проложенных совместно.
  • Поправку на повторно-кратковременный и кратковременный режим работы.
  • Выбор сечения проводников по экономической плотности тока.

Как правило, сечение проводников в кабельной линии большой протяженностью и воздушные линии электропередач различного назначения, в первую очередь производится расчёт по допустимому падению напряжения. Расчет, но условиям воздействия длительного тока (нагревания) имеет в данном случае поверочный характер, так как поперечные сечения проводов, выбранные по допустимой потере напряжения, удовлетворяют условиям нагревания.

В связи с этим, поперечные сечения кабелей и изолированных проводов силовых сетей промышленных объектов с большой плотностью нагрузки при относительно малой протяженностью линий, определяется, прежде всего, по условиям нагревания (допустимым значением тока для определённого типа проводника). Сечения же протяженных и слабонагруженных линий, определяются допустимым значением потери напряжения и условием механической прочности. В данном случае расчёт допустимой потери напряжения носит поверочный характер.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *